WEAK DISCONTINUITIES IN AN ELECTRICALLY CONDUCTING
MAGNETIZED LIQUID
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1. We will discuss the propagation of weak discontinuities in a conducting magnetized liquid, The liquid
is assumed to be incompressible (p = const), ideal (dissipative forces are absent), and nonuniformly and iso-
tropically magnetized according to the arbitrary law p = u(p, T, H), so that the magnetic induction B and the
strength of the magnetic field H are related by the equation

B = plp, T, HH. .1

The dependence, of the magnetic per meability u on the density p and temperature T permits taking into
account magnetostrictive and magnetocaloric effects in a magnetized liquid. Equation (1.1) has been adopted
in connection with the investigation of the flows of liquid dia- and paramagnetic metals [1] and electrically con-
ducting ferromagnetic liquids [2], in which it is possible to neglect the phenomena associated with hysteresis
of magnetization.

The system of equations which describes the nonsteady motions of such a liquid in the magnetohydro-
dynamic approximation is of the form [3]

- divv =0, divB=O,-‘%—(S+S‘)=O,

p |
PG =—V(E+¥) + - rotHxB+ MyH, 28 —rot{vxB].

(1.2)

Here v is the fluid velocity, M = (—1)H/ (47 is the magnetization intensity,
g .1 " (1.3)
¢f§(p—1 — ppo) HE, St= g j wrHAH,

0
and Ny UTeee denote the partial derivatives of the function. u with respect to p and T, respectively, with the other
parameters constant.
The entropy S and temperature T of the liquid satisfy the equation T="T(S) {4] in the absence of an elec-
tromagnetic field.

The discontinuity of the first derivatives of the arbitrary function u ﬁpon passing through the surface
¢(x, y, Z, t) = 0 of a weak discontinuity is determined by a single function Ay, {5], so that
(g = M, {Ju/dt) = —MG, - (1.4)

where n is the unit normal vector to the surface ¢(x, y, z, t) =0 and G= —n %?—/l/| voj? is the propagation

velocity of the discontinuity; the angular brackets denote a discontinuity of the quantity contained within them
upon passing through the discontinuity surface.

Using (1.4), we obtain from (1.2) the dynamic conditions at weak discontinuities

(A,n) =0, (Apn)=0, 0(As+ Age) =0, ' (1.5)
pO%, = (hp -+ M) 1 + - X (0 X hg) — Mrgrm,
A,B 0 + MB«” = 0,

where 0 = G— vy, is the normal component of the velocity of an element of the discontinuity with respect to the
medium, vy = (vn), By = (Bn), Ay = Avxi+>\vyj+ Avgk, andi, j, and k are the unit vectors of the cartesian coor-

dinate system x, y, and z.

We have in addition
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hr = Tehs, hp=prhr + (u — 1 — ppo)Hhg /(4n),
hge = 8Thr + pr Hhg/(4np),
Ag = (WMAgB)/B — purheB)/(n* + puB),
My vy (hpB) B [T (1.6)

q=——

b uB(p +pgB) Wt ugh

from Egs. (1.1), (1.3), and the equation of state.

We will represent each of the vectors in the form v = v *vpn, where v is the projection of the vector v
onto the plane tangent to the discontinuity surface. Taking account of the fact that Ay, = Av~Av,n and using
Egs. (1.6), we transform the system of equations (1.5) to the form

C Rey=0, g, =0; (1.7
hp = —hyp — (Bhg )/(4n) + Bo(hg n)/(4s) + Mg (1.8)
Bphy, = —Ohg,; (1.9)

o0, — _ B, ‘A'E_r_ g (Ap.Be) B, prTghsB |
=" In f BT WranB B piegs | (1.10)

m = [4mpp (u* + pmB) ™, N =[14 S7Ts — pTsmB? . (L.1y)

It follows from Egs. (1.7) that the derivatives of the normal components of the velocity and magnetic field
induction are continuous on the characteristic, so that the discontinuity can undergo only derivatives of the tan-
gential components of the velocity and induction. Equation (1.8) determines the intensity of the discontinuity of
the pressure derivatives, The system of homogeneous equations (1.9)-(1.11) serves to determine Ag, )\'VT’ VB,
We obtain from the existence condition of nontrivial solutions of this system an equation which determines the
possible velocities ¢ of weak discontinuities in a conducting magnetized liquid:

B2
9 (92 ~ Tmw ) [6* — mB}, (u® -+ puBi/B) — Nu'udTsm®BrBY| =0. (1.12)

Thus the following types of weak discontinuities exist in an electrically conducting, incompressible, mag-
netized liquid:

magnetohydrodynamic (Alfvén)

0% = mB% (4* + puB); (1.13)
magnetosonic
63 = mB} [u* + puBi/B + NpipiTsmBl]; (1.14)
and entropic ’
0s = 0. (1.15)

Thus magnetostrictive effects in an incompressible liquid affect only the intensity of the pressure dis-
continuity. If u = u(p) = const, only Alfvén and entropic discontimiities are possible in an electrically conducting
liquid, so that a magnetosonic discontinuity is exhibited in an isotropically magnetized liquid exclusively due to
nonuniformity of the magnetization law,

The possibility of plane magnetosonic waves of infinitely small amplitude in a conducting magnetized
liquid was first pointed out in [6].

We obtain from (1.13) and (1.14) that the propagation velocity of a magnetosonic discontinuity is equal to
the Alfvén velocity only in the cases in which the magnetic induction vector is orthogonal to a discontinuity
element (B = 0), tangent to it (B, = 0), or for parameter values for which

windTsmB = pg [1 + 87Ts — uiTsmB?). ’
In the latter case the magnetosonic velocity coincides with the Alfvén velocity for an arbiirary orientation

of the discontinuity elements relative to the field. We note that this case is impossible if the dependence of the
magnetic permeability only on the temperature or only on the magnetic field intensity is taken into account.

(1.16)

We will determine the quantitiesA; (i = p, T, ...) in each type of discontinuity. From (1.9) and (1,10) we
have
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[6° — (u* + paBn/B) mB}] (Ap Bc) = — ppT'smBABMs,
and Eq. (1.11) is reduced to the form ‘
6 (6% — 031) [6* — mB2 (u® + pgBi/B)|~"As = 0.
From this Aq = 0 follows for a magnetohydrodynamic discontinuity (9 = 6,), so that A= 0. From (1.6)-(1.9)
we have
'}“Vn sz }"Bn = A'H = l,se = }\.p == (lvB) == (lBB) = 0,

A’H= 7\43/}1., }, == 4

1 3
= Vg v

Only the tangential components of the velocity, induction, and magnetic field intensity are altered in
magnetohydrodynamic discontinuities.

The properties of magneti)sonic discontinuities depend significantly on taking the magnetocaloric effect
in liquids into account. First we will consider the case in which g = 0, Such magnetization laws occur in
particular in diamagnetic liquids and in a paramagnetic liquid in strong fields when the magnetization is close
to saturation,

For this case §€ = 0, and we obtain Ag = 0 from (1.11) and

M=0, Ap=— (kpB:)mpp[p—ppo + puBr/(uB)), »(1'17)
hog = (hagBe) 35
Mg = =gy bz = dmpy’m (b By)/B
from (1.6~(1.8). ‘ )
Consequently, the derivatives of thermodynamic parameters are continuous.
For the case u =0 we obtain from (1.6)~(1.11) (
1.18)

b =Tshs, hg=—hs(1+S77s)/(u’ + puB) prmB,

Y ’ .
Ap = g (— ¥rTsppr +p (1 4+ S775)[(2 — ppo) p + puBa/B] — pudTsmBS (u* + 1B},

.
Moy = — heBo/NpprmBY, by, = — 5o

The derivatives of thermodynamic parameters undergo discontinuities in connection with taking the mag-
netocaloric effect in weak discontinuities into account. It follows from (1.17) and (1.18) that the discontinuities
of the derivatives of the tangential components of the velocity and induction lie in a plane which passes through
n and By, Thus in contrast to the Alfvén discontinuities the magnetosonic discontinuities are plane polarized,

Now let an element of a magnetosonic discontinuity move with the Alfvén velocity, Then if B, = 0, we
obtain the same relationships for the discontinuities of the derivatives as for magnetohydrodynamic discon~
tinuities. If B, = 0 or if condition (1.16) is satisfied, the discontinuities of the derivatives of the magneto-~

hydrodynamic parameters are arbitrary in general.
It follows from Eq. (1.9)for an entropic discontinuity (6 = 0) that Ay, By = 0. If By = 0, then Av; = 0.
Thereby we have from (1.10)
Ap, = pprTsBBAs/(*B + puBh),
A = — prTsBiAs/(uB + ppBi),

. PlohyBrB
Ay = — prTn
P [\pT"“ 4““(!“2£+MHB$L) }TSKS-

In this case the derivatives of the velocity on the entropic discontinuity are continuous. If 7 = 0, only the tem-
perature and entropy undergo a discontinuity at an enfropic discontinuity.

If B, = 0, then Ay, }‘B'r and Ag are arbitrary, and Ap and Ay are determined from Egs. (1.6) and (1.8).

2, Let us investigate the question of the propagation of weak discontinuities in a conducting magnetized
liquid.
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The magnetization M of paramagnetic liquids is determined by Langevin's formula {1]:
M = ML(E), L) = cth § — &, § = m,H/kT, 2.1
where my is the magnetic moment of the molecule, k is Boltzmann's constant, and My = const.

Equation (2,1) is adopted for ferromagnetic liquids [7]; in this case m; is the magnetic moment of single-
domain particles of a dispersed ferromagnet,

Equation (1.16) has the form

f(&) = L(E cth & — 1)(1 — E¥sh®E) + E cth & - E¥shE — 2 = 0,
§ = MokTs/mopT

in the case of Langevin's law.

For values 0 < { <« this equation has no solutions, and the function f(¢) is positive. Thus 9%\42 0‘%\‘ ina
paramagnetic liquid.

For the case p = u(H) we have from (1.12)
O _, _ 4gBiB (2.2)

0%, B4 pyB’

The known magnetization laws, as well as the kinetic representations on the nature of the magnetization,
of dia~ and paramagnetic substances [1] permit assuming that for the magnetization M(H) in a paramagnetic
substance dM/GH >0 and d*M/dH?=< 0 and in a diamagnetic substance dM/H <0 and d*MAH?=0, Then we have
for the magnetic permeability {8]

O pa<S<U —wWHE <), A —-p/HSpa<<0 (0> ). (2.3)

Therefore it follows from (2.2) that in a paramagnetic liquid the velocity of magnetosonic discontinuities is
greater than the Alivén velocity, and in diamagnetic liquids it is always less (with the exception of discontinuity
elements for which By = 0 or Bt = 0).

We will represent the velocity of magnetosonic discontinuities in the form
6% = gl + bl(1 — 1), @ = B¥4mpp, | = cos?® ¢, cos ¢ = B,/B. 2.4
In a paramagnetic liquid
b= mB* (Np*u}TsmB® — pyB),
and one can assume b> 0 by virtue of what has been set forth above,
In a diamagnetic liquid
- pgB® <0
dmpp (B 4 pyB)

with @a+b>0,

The general appearance of the phase-velocity diagrams is illustrated in Figs. 1 and 2, where [4 and Iy
denote the ¢(p) curves for magnetohydrodynamic and magnetosonic discontinuities, respectively (one-fourth of
the diagrams are given), The phase-velocity diagrams in a liquid magnetized according to an arbitrary law g =
ulp, T, H) have the same appearance if one excludes from the discussion the degenerate case, in which Eq.
(1.16) is satisfied, In the latter case the curves I5 and I coincide.

Let the state of the liquid be characterized by the parameter values
v(r, t) = 0, B(r, t) = const, T'(r, t) = const, p(r, ) = const,
r = zi + yj + zk.

Fig, 2
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Fig. 4

Using the results of Ref. 9, we obtain that each element of the discontinuity surface moves through the liquid at
constant velocity without rotating. The velocity component normal to the discontinuity element coincides with
one of the velocities 8 (see (1.12)). I the surface of a weak discontinuity is specified at the initial instant of
time t;, then at time t = )+ 1 it is an enveloping plane of the tangents to the initial discontinuity surface Q,
shifted by a distance ¢ in the direction of the normals to Q,.

The intersection of the discontinuity surface with the plane passing through B at time t;+1 is illustrated
in Figs, 3 and 4 for an initial discontinuity surface Q¢ concentrated near the origin of coordinates and contain~
ing every kind of oriented elements. The Lyj curves denote the cross sections of the surfaces of magnetosonic
discontinuities, The points Lj denote Alfvén discontinuities. The entropic discontinnity coincides with the cur-
rent surface and is illustrated by the point 0 in the diagrams.

The surfaces of weak discontinuities are specified in this case by the parametric equations [10]
x=[sm+28u—p1, Y=o — 2 )y 1=1 @.5)

(the origin of the cartesian coordinate system (X, Y) coincides with the discontinuity surface at the initial
instant of time, and the X axis is directed along the vector B). With the use of (2.4), Egs. (2.5) are reduced to
the form

_atb—=0? R il 4 1
Verst—0 =~ Vets(d-—pn (2.8)

for magnetosonic discontinuities.

Elementary investigations show that the curves (2.6) depict two curvilinear iriangles whose tips are
cuspidal points, and the convexity of these triangles is directed towards the inside of the region bounded by
them. In a paramagnetic liquid these triangles are directed with the taper away from the origin of coordinates
(Fig. 4) and in the diamagnetic case — towards the origin of coordinates (Fig. 3). The tips of the {riangles are
determined by the equations

1=0,1=(3b-+ 2 — VZ?® I 3ab)/3b.

The Ly; curves exist in a nonuniformly magnetized liguid for values of the magnetic permeability which
differ as little as desired from unity, and they degenerate into the points L only in uniformly magnetized
liquids. We note that the diagrams in Fig. 3 are similar to the diagrams for slow magnetosonic waves in mag-
netohydrodynamics. The diagrams given in Fig. 4 have no analogy in isotropic magnetohydrodynamics.

Figures 3 and4 correspond to casesin which the dependenl:es illustrated in Figs. 1 and 2 occur between the
velocities of the discontinuities,

3. We will discuss two-dimensional steady~state motions of an ideal conducting magnetized liquid with
v, = 0 and B, = 0, In this case the characteristic surfaces of the system of equations (1.2) are cylindrical sur-
faces whose generatrices are parallel to the z axis. Only magnetosonic and entropic characteristics are possi-
ble in two-dimensional motions of the liquid. These characteristics coincide with the current lines. For steady-
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state motions § = —v,. Taking this into account, we obtain from {1.14) an equation which determines the possi-
ble characteristic directions in the (x, y) plane:

@) 02 — ¢ (R, + 3R,)] — 2(4')° [Q.Qy — 20y ( By + 203R,)]
+ (y’)2 [Qz — Ry~ 6q426.‘13321 -2y [ony — qxqy (Rl -+ 29332)]

+ QZ —-95 (R1+9332) =0,

38.1)

where
y=%; Q=vi4 q=A4 A=BVinew Q=0+ 0

R, = (u® + Nu'pjTsmB)/(u® + puB) Ry = (puB — Nu*uiTsmB*)/(u* + puB).

In the general case Eq. (3.1) determines either four or two characteristic directions at the flow point r,
depending upon the magnitude of the vector v. We construct the Ly curves in order to determine the number
and directions of the characteristics from the flow parameters at the point r. Then one can show similarly to
Ref. 9 that the directions of the characteristics at this point coincide with the directions of the tangents drawn
to the Ly curves from the point —v(r). It follows from this that if the roots of the vector —v(r) fall into the
regions II bounded by the curvilinear triangles in Fig. 3 and 4, then four real characteristic directions exist at
the flow point r. If the end of the vector —v(r) falls into the regions I, then we only have two real character-
istics.

There are no characteristics in region II for the flow of a liquid in a perpendicular magnetic field, and
we have two characteristics in region I. If the vectors v and B are parallel, then two real characteristics
besides the current lines exist in region II, and there are no real magnetosonic characteristics in region I.
The condition for the existence of characteristics is described in the form

u® 4+ Nu'pdTsmB® << v*/mB* < p* + puB (04 < 03)
or )
u? -+ paB <V /mB® < p’ + Np*uiTsmB® (03 > 0%)

for the flow of a liquid along the force lines of the magnetic field.

4, The presence of real magnetosonic characteristics results in significant deviations in the motion of an
incompressible nonunifor mly magnetized liquid in comparison with the flow of an electrically conducting liquid,
for which the magnetic permeability is assumed to be constant.

We will discuss one-dimensional simple waves, which are a particular case of fransverse waves, which
were investigated in Ref, 11,

For an arbitrary magnetization law p = u(p, T, H) one can derive from the system (1.2) the equations of
simple waves [12] in the form
ar duy

¥ ke NpprTsmBy, aE, = 8/B., (4.1)

B, = const, v, = const, B, =0, v, =0,

where ¢ is the velocity of the front of a simple wave defined by Eq. (1.14), in which it is necessary to set
Bn = Bx.
Since the magnetization for a paramagnetic liquid decreases as the temperature increases (ur<0), then

the temperature increases monotonically in magnetosonic simple waves, as follows from (4.1), and, onthe con~
trary, the velocity decreases monotonically as the magnetic induction increases.

The equation
z — (v + 0(B))t = F(B,) (4.2)
determines after integration of the system (4.1) the dependence B_(x, t) in a simple wave propagating in the
positive direction of the x axis according to a specified initial magnetic induction distribution: By = Fl(y),

We obtain from (2.1) in weak magnetic fields (£«1)
p—1_ #B—17,
B R T

for an electrically conducting paramagnetic liquid magnetized according to Langevin's law. Taking the equation
of state for the liquid in the form {4] S = ¢p In T+const (cp is the specific heat) and neglecting terms in (4.1) of
the order of (uo— 1)? and higher, we obtain after integration
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2 _. B2
I*— T3 (o — 1) 2 2000,

4np
B —1) —
ey By— By, (“o 1) (By — Byy)
Uy vyo V4ﬂp + ] 2]/4—;19 . (4.3)

With g = 1 Egs. (4.3) determine the variation of the variables inan Alfvén simple wave.

In strong magnetic fields (£>>1, a state of saturation of the magnetization) the magnenzatmn M is con~
stant, so that p — 1 = 47M/H, Then we obtain from (4.1)

dv, . (33-—4nMB§ 2

y - 4.4)
P55 ) ) T = const.

B~ Vi

Restricting ourselves to the values [ — 1|«1, we have from (4.4)

- onM a2 M3 B B '
=T V4np{1+ _732( +432+8 .5, ar"th )+0( )}“‘c‘m“

Equations (4.1) can be investigated in the case of an arbitrary magnetization law p = p(p, H), Then the
temperature in a simple wave is not altered, and the dependence of the transverse component of the velocity on
the induction is determined by the second of Egs. (4.1), whereby

BRI Vo N BT
Vimg ¥ W VS @ umr

g 40 B, Bly? 3By (* + pyB)? + dnBlpiM (4.5)

]

By 8npy’ (p+ pgH) B (WH + pyB)?

Since

it follows from Eqs. (2.3) that de/dBy>0 in a paramagnetic liquid and de/dBy<0 in a diamagnetic liquid for
waves propagating in the positive direction of the x axis,

The integral curves Vpv (By) in the (B Vp pvy) plane intersect the (\/va ) axis at a constant angle — arctan
(LVEmpp) and decrease monotomcally as B mcreases. In a diamagnetic 11qu1d these curves are convex down-
ward, and in a paramagnetic liquid, upwarg

It follows from (4.5) that the profile of a simple magnetosonic wave is deformed with the passage of time,

Differentiating (4.2) with respect to x with t constant and using the last of Eqs, (1.2), we obtain

td0/dB, - dF[dB, dB, L
e (By) —a =

From this we obtain that on the sections of the profile of a:simple wave in a diamagnetic liguid where mag-

netization occurred (dF/dBy<0) at the initial instant of time, it is maintained at subsequent times. In the de~

magnetization section (dF/dBy> 0) demagnetization occurs up until the time

dF/dB
t1=min[—— d ”]

db/dB,

At time t = t; an inflection point is formed on the demagnetization section of the profile of a simple wave [10]:

oz P\ - 4.8)
(#),-0 (%)~

which indicates the onset of a demagnetization shock wave.
The system of equations (4.6) serves to determine the time and place of formation of the shock wave,

Similarly, it has been shown that the shock waves which arise in a paramagnetic liquid upon deformation
of the profile of a simple wave are magnetization waves. In contrast to Alfvén waves, these shock waves of
weak intensity have a time-independent structure [13].

The author expresses his gratitude to I, E, Tarapov for his constant attention to this research,
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MAGNETOHYDRODYNAMICS OF HEAVY FLUIDS

R. Kh. Zeitunyan UDC 538.4

Four dimensionless parameters appear in the equations in connection with the discussion of the time~
independent flow of an ideal compressible rotating plasma in a gravitational field: the Froude Fr, Rossby Ro,
Mach M,, and Alfvén A; numbers. Here it is assumed that A; and M are simultaneously very small and satisfy
the similarity relationship A%/M; = vo, where vy = O(1) is a constant, First the case is analyzed in which Fr—0
and A%/F r% = Ay, where Ay = O{1) is a constant; the classical approximation of static equilibrium is obtained. ¥
one notes that Fr? = yM}/B), where By is the ratio of characteristic lengths, then it is necessary to discuss two
cases. The first case corresponds to By = 0(1) , and a limiting system of equations is derived which permits
studying atmospheric motions near the planets of the solar system, for which the characteristic angular rota-
tional velocity is not very high (A %A%o«l). The second case corresponds to Sg— 0 and B/My = ugy, where pg =
o(1) is a new constant; it is possible to obtain a limiting system of equations which is suitable for analysis of
the development of sunspots, where the magnetic and convective effects are closely linked.

1. Introduction

We will assume that only gravitational and electromagnetic forces are acting on the "fluid medium?®,
which is freated as an ideal plasma (see [1] in connection with the definition of an ideal plasma). The equations
which describe a nonsteady adiabatic flow of an infinitely conductive plasma rotating with angular velocity
when viscosity and thermal conductivity are neglected have the form (the magnetic permeability p is assumed
to be constant):

o{DVIDt + 2[@-v1} + yp + pge; = (1/p)[rotB-Bl; 1.5
dplat -+ div(pv) = 0y (1.2)
divB = 0; (1.3)

DT y—1TD
—gt——‘lv—?—p—f‘o, (1.4)
0B/3t + rot [B-v] = 0. 1.5)

The plasma is treated as an ideal gas with constant specific heats cp and cy (v = cp/cv); therefore
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